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OBJECTIVES -

Our overall goal is to develop, implement and transfer
accurate new numetical methods for solving the moving
interface problems of solidification aund crystal growth. We
have several specific objectives:

e Combine fast algorithms, level set techniques, adap-
tive refinement and data structares to develop and
implement accurate, efficient and general new meth-
ods for moving sharp interfaces.

o Develop a modular level set code for transfer to other
researchers, labs, and industry.

» Combine spectral methods and stiff ODE soivers to
produce fast spectrally-accurate solvers for phase field
models of solidification and related problems.

e Validate phase field models by numerical experiment
and identify parameter choices appropriate to indus-

- STATUS OF EFFORT
We bave attained our first and second objectives with
the modular semi-Lagrangian methods for moving inter-
faces reported in Publications [P2-P5]. Our third objec-
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tive was completed for the case of periodic boundary condi-
tions in (Strain, 1995b), which is sufficient for basic valida-
tion and parameter identification. Further work on general
boundary conditions and general domains is in progress.
Additionally, we present efficient and accurate new vortex
moethods for convection in the melt in Publication [P1].

ACCOMPLISHMENTS AND NEW FINDINGS
We now sumrmarize our progress in vortex methods and
moving interfaces in more detail.

Vortex methods

‘We have studied vortex methods for incompressible 2D
fows both as the simplest examples of level-set-based mov-
ing boundary techniques and as solvers for the convection '
in the melt around a growing crystal. Qur most recent
work on vortex methods is concisely surveyed in (Strain,
1996b).

o In 19924, we developed a new second-order accu-
rate “triangulated” vortex method which solved the long-
standing problem of long-time inaccuracy in traditional
vortex methods (Russo and Strain, 1994).

o In 1994-5, we carried this line of research further.
First, we developed an important tool for constructing
quadrature formulas for singular integral operators in sev-
eral dimensions (Strain, 19953).
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e Then in 1996, we produced new quadrature-based 2D
vortex methods of arbitrary order with excellent long-time
accuracy properties (Strain, 1996a).

e In 1996, we also developed new methods based on
the smooth quadrature rules developed in (Strain, 1995a).
Publication [P1] presents an accurate and efficient new ap-
proach to vortex methods for modeling incompressible in-
viscid fluid flow in two space dimensions.

Abstract

Since their introduction in the 1970’s, vortex methods
bave been widely generalized and applied to compute many
complex physical flows. They model such flows by moving
discrete particles with a smoothed approximate fluid veloc-
ity. Thus their convergence analysis must balance smooth-
ing errors against velocity approximation. Three long-
standing theoretical problems have hampered the analysis
of vortex methods:

o Long-time computations lose high-order accuracy via
the Perlman effect: velocity approximation errors
blow up when the flow map twists.

o Proofs of order-m convergence require 2m deriva-
tives, much more than standard numerical methods.

o Parameter balances appropriate for convergence pre-
clude efficient velocity evaluation by the fast multi-
pole method.

Reformulation, quadrature and error analysis are used
in this paper to solve these problems. The Perlman effect
is eliminated by combining 2 fres-Lagrangian formulation
with fast adaptive quadrature rules. Thus long-time high-
order accuracy is obtained by constructing a new set of
particle weights at each step. A new error analysis of ve-
locity approximation suggests a balance of parameters and
choice of smoothing functions which requires only m +1
derivatives for essentially order-m convergence, balving the
differentiability required of the flow. This balance can be
combined with fast summation schemes to yield almost
optimal efficiency. Numerical results verify the error anal-
ysis and exhibit excellent accuracy and efficiency, giving
this approach-——which generalizes widely—practical value
as well as theoretical importance.

Summary

Vortex methods involve several components: velocity
evaluation, vortex motion, diffusion, boundary conditions
and regridding. In Publication [P1], we improve the speed,
accuracy and robustness of the velocity evaluation. We
eliminate the flow map, improve the quadrature used for

Jovd seeZeebon1s:Aal

the Biot-Savart law, and analyze the error in 2 nonstan-
dard way, requiring less differentiability of the flow and
obtaining efficient new parameter balances. We employ
standard techniques for the vortex motion and consider in-
viscid free-space flow to eliminate diffusion and boundary
conditions. Our approach combines naturally with regrid-
ding and fast summation methods.

First, we review Lagrangian vortex methods. These
move the nodes of a fixed quadrature rule with the com-
puted fluid velocity, preserving the weights of the rule
by incompressibility. This procedure loses accuracy when
the flow becomes disorganized, motivating many regrid-
ding techniques. Even before the flow becomes disorga-
nized, however, obtaining high-arder accuracy with 2 fixed
quadrature rule requires smoothing of the singular Biot-
Savart kernel. Smoothing gives high-order accuracy for
short times but slows down fast velocity evaluation tech-
niques and halves the order of accuracy relative to the dif-
ferentiability of the flow. We review two free-Lagrangian
vortex methods, the triangulated vortex method we devel-
oped in (Russo and Strain, 1394) and the quadrature-based
method of (Strain, 1996a). Triangulated vortex methods
are robust, practical and efficient but limited to second-
order accuracy. Quadrature-based methods compute adap-
tive quadratures tailored to the Biot-Savart kernel at each
time step, yielding long-time high-order accuracy at asymp-
totically optimal cost.

Publication [P1] develops a free-Lagrangian method which
couples kernel smoothing with adaptive quadrature rules
not tailared to the Biot-Savart kernel, producing long-time
high-order accuracy. The asymptotic slowdown produced
by kernel smoothing is almost eliminated by a careful choice
of smoothing functions and parameters, based on a new
error analysis of the velocity evaluation. This analysis re-
quires about half as many derivatives of the solution as the
standard approach.

The structure of our method is standard: At each time
step, the smoothed velocity is evaluated once and the vor-
tices are moved with an explicit multistep method. The
velocity evaluation is nonstandard: First, a data structure
groups the N vortices into cells convenient for integration.
Then 2 global order-g quadrature rule is built. Finally, the
fast multipole method is used with this rule to evaluate
the smoothed velocity field.

The error is measured for standard test problems and
our theoretical predictions are fully verified. Thea more
complex flows are computed.

Moving interfaces
Our work on moving interface problems in materials
science combines fast PDE solvers such as boundary inte-
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gral methods with fast geometric algorithms and level set
techniques to build effective new numerical methods.

e In 1989, we developed a powerful implicit boundary
integral method for computing periodic dendrite forma-
tion in a Stefan-type model of unstable solidification. We
used a spectral discretization of a new arclength-preserving
curve motion algorithm 2nd an unconditionally-stable im-
plicit time stepping scheme, solved by a modified New-
ton method. Our method was expensive but accurate and
robust; higher-order accuracy was obtained by Richard-
son extrapolation. Numerical results agreed closely with
linear stability theory and predicted correct tip-splitting
phenomena in the nonlinear regime. The method and nu-
merical results are presented in (Strain, 1989).

e In 1990, we developed fast algorithms for evaluat-
ing heat potentials (Greengard and Strain, 1990) which
speeded up our boundary integral method (and many other
caleulations) by several orders of magnitude. This dis-
covery led to the fast Gauss transform which has proven
widely applicable (Greengard and Strain, 1991; Strain,
1991).

o In 19902, we developed a level set/boundary integral
method for dendritic solidification (Sethian and Strain,
1992). This combined the boundary integral method of
(Strain, 1989) with fast algorithms from (Greengard and
Strain, 1990) and the level set metbod of (Osher and Sethian,
1988). The level set method bandled topological changes
effectively while fast boundary integral techniques ensured
accuracy and efficiency in the velocity evaluation.

o In 1992-6, we developed efficient and accurate new
vortex methods for modeling convection in the melt (Russo
and Strain, 1994; Strain, 1996a), together with new error
analyses [P1] and quadrature rules (Strain, 1995a) for gen-
eral integral equations. Much of this work is summarized
above and in (Strain, 1996b).

e Our major achievements in 1996-99 have been the
development and implementation of highly effective new
mumerical methods for general moving interface problems.
Abstracts of Publications {P2-P5], then an overview of
these methods, follow.

Semi-Lagrangian methods for level set equations [P2]

A new numerical method for solving geometric moving
interface problems is presented. The method combines a
level set approach and a semi-Lagrangian time stepping
scheme which is explicit yet unconditionally stable. The
combination decouples each mesh point from the others
and the time step from the CFL condition, permitting the

" construction of methods which are efficient, adaptive and

11/S

modular.
Analysis of a linear one-dimensional model problem

govd |gee8ergn1sal

suggests a surprising convergence criterion which is sup-
ported by heuristic arguments and confirmed by an exten-
sive collection of two-dimensional numerical results. The
new method computes correct viscosity solutions to prob-
lems involving geometry, anisotropy, curvature and com-
plex topological events. -

Fast tree-based redistancing for level set computations [P3]

Level set methods for moving interface problems re-
quire efficient techniques for transforming an interface to
a globally defined function whose 2ero set is the interface,
such as the signed distance to the interface.

This paper presents an efficient algorithm for this “re-
distancing” problem. The algorithm uses trees and fast
Delaupay triangulation to compute a global approximate
signed distance function. An adaptive tree mesh is built
to resolve the interface, and the vertex distances are eval-
uated exactly with an efficient search strategy, providing
both continuous and discontinuous interpolants. Given a
polygonal interface with N elements, the algorithm runs
in O(N log N} space and time, and numerical results show
it is highly efficient in practice.

Tree methods for moving interfaces [P4]
A fast adaptive numerical method for solving moving
interface problems is presented. The method combines a

- level set approach with frequent redistancing and a semi-

Lagrangian time stepping scheme which is explicit yet un-
conditionally stable. An adaptive tree mesh is used to
concentrate computational effort on the interface, so the
method moves an interface with N degrees of freedom in
O(Nlog N) work per time step. Efficiency is increased
by taking large time steps even for parabolic curvature
flows. The method computes accurate viscosity solutions
to a wide variety of difficult moving interface problems in-
volving merging, anisotropy, faceting and curvature.

A fast modular semi-Lagrangian method for moving interfaces
{P5]

A fast modular numerical method for solving gemeral |
moving interface problers is presented. It simplifies code
development by providing a black-box solver whick moves
a given interface one step with given normal velocity. The
method combines an effidently redistanced level set ap-
proach, a problem-independent velocity extension, and a
second—order semi-Lagrangian time stepping schemme which
reduces numerical error by exact evaluation of the signed
distance function.

Adaptive quadiree meshes are used to concentrate com-
putational effort on the interface, so the method moves an
N-clement interface in O(N log N) work per time step.
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Efficiency is increased by taking large time steps even for
parabolic curvature flows. Numerical results show that the
method computes accurate viscosity solutions to a wide
variety of difficult geometric moving interface problems in-
volving merging, anisotropy, faceting, nonlocality and cur-
vature.

Definitions and examples .

A moving interface is a collection I'(¢) of nonintersect-
ing oriented closed curves (in the plane) or surfaces (in
space). A sufficiently smooth moving interface has

o An outward unit normal vector N(z,%),
o A signed curvature C(z,t), and
o A normal velocity function V{z,1).

A moving interface problem consists of 2 specification of
V(z,t) as a function of I'(t), its history and geometry, and
any other fields or variables which may be present. For
example, we may have passive transport

V(z,t) = N(z,t) - F(z,t)

under a given velocity field F, or curvature- and angle-
dependent normal velocity

V(z,t) = R + ecos{k(0 + 6p)) +6C

where cos = N'-Z, or we may have Stefan-type conditions
such as o

V{z,t) = [.8_1’7]

where u(z, £) solves the heat equation u, = Au off I'(¢) and
u = eC on I'(t), as in models for dendritic solidification of
a pure material such as succinonitrile.

Level set equations
Any moving interface problem can be reformulated as
a PDE for 2 function ¢ whose zero set is I'(¢):

I(¢) = {zle(z,t) =0},
for example the signed distance function

,8) =% mi -

p(z.f) = min |iz vll

with the + sign chosen in the interios of ['(2). The normal,
- curvature and velocity are given by

Ve

IVell’
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Level set methods -
The level set method (Osher and Sethian, 1988) turns

around the Jast formula for V and regards it as a PDE for
©:

¢ = V||Vel = 0.
This requires us to extend V off I'(¢) to a function defined
everywhere. This “V extension” is one of the key ingredi-
ents of the level set technique. The V extension should be
smooth and should agree with V on ['(t), but is otherwise
arbitrary. The numerical properties of the method can be
strongly affected by the choice of V extension.
The standard level set method involves four steps.

o Choose a V extension.

o Evaluate ¢ on 2 uniform mesh.

o Advance ¢ with a uniform mesh solver borrowed
from hyperbolic conservation laws.

¢ Find T'(t) by contouring ¢ when desired.

A fifth step, redistancing, can be performed occasionally
to enhance robustness:

o Replace ¢ by the signed distance to its zero set ['(2).

On 2 uniform mesh, redistancing can be extremely costly—
as costly as the rest of the calculation put together.

Advantages and disadvantages ’

The main advantage of the level set method is topolog-
ical robustness: merging and splitting pieces of interface is
handled automatically by the level set equation. Potential
disadvantages include the expense of going up a dimen-
sion, the grid-dependence of the solution, and the diffi-
culty of finding a problem-dependent V' extension. Since
the method is explicit, tiny time steps are required for some
problems. Stefan-type problems, for example, require the
time step k to satisfy

k< ORY)

on a mesh of size A. 4

Our new method overcomes these disadvantages by com-
bining the level set approach with an adaptive tree mesh
for efficiency, a general problem-independent V' extension,
and an explicit unconditionally stable time stepping method.
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Time stepping

Our time stepping method is based on the backward
characteristic method of Courant, Isaacson and Rees (1952).
The “CIR” method solves the hyperbolic equation

@—=F(z,t)- V=0
by the following algorithm: At each z in the grid,
o Evaluate the velocity F(z,t,).

© Move z back with velocity F(z,¢,) to s = z+kF(z,t,).

o Interpolate ¢(z,%,) to the point s.
o Set ¢(z,tn+1) equal to the interpolated value.

The CIR method is first-order accurate and not in con-
servation form, but has the unusual property of being ex-
plicit yet unconditionally stable. It converges for model
problems as long as

E>O), -

an accuracy condition which is the reverse of the usual
CFL stability condition.

We have developed 2 second-order “semi-Lagrangian”
method which combines 2 CIR predictor

P(z) = 9(2,t) = ¢(z + kF(z,¢),2) 1)
with a trapezoidal corrector

#(z) = o(z + ;F(i, £+ gf‘(z, t+R.9. @

Here F is built from the interfacial velocity V" of the zero
set Gamma of the predicted solution # at time £+ k. This
predictor—corrector pair is second-order accurate in time,
explicit, and unconditionally stable; each time step re-
quires two velodity evaluations. Since our advection veloc-
ity F(z,t) extends the user-specified velocity functional V
defined on the zero set T'(2) of ¢(z, ¢), each semi-Lagrangian
time step requires several complex global operations. Start-
ing with an interface I'(¢), our method carries out the fol-
lowing steps to produce the new interface I'(f + £):

o Evaluate the signed distance ¢ from the interface
T(t). :

o Evaluate the interfadal velocity V of I'(Z) by a user-
supplied module,

o Extend V to a global advection velodity F.

o Advance ¢ via F to the predicted CIR solution
defined by Eq. (1)-

Iovd 9e28TPb9n1S:Adl

o Contour ¥ to get the predicted interface T
o Evaluate the predicted interfacial velocity V of [.
o Extend ¥ to a global advection velocity £.

o Advance ¢ via F and F to the corrected solution ¢
defined by Eq- (2).

o Contour ¥ to get I'(t + k).

Each of these steps can be efficiently implemented with an
adaptive quadtree mesh.

Semi-Lagrangian methods for level set equations

We first tested the CIR scheme in Publication [P2] by
solving level set equations with a fixed uniform mesh and
ENO differencing, to obtain simplicity and high-order ac-
curacy. We extended the velocity for passive transport
and geometric moving interfaces by evaluating the natu-
ral formulas, with frequent redistancing, smoothing and
truncation sufficient to satisfy the CFL condition even for
parabolic problems like motion by curvature. A surprising
result of this work is that the CFL condition can be satis-
fied by nonlocal velocity evaluation rather than restricting
the time step. Numerical results verify the accuracy and
stability of the method.

Fast tree-based redistancing for level set computations

As an intermediate step between the uniform mesh
method and our ultimate goal, Publication [P3] develops
an efficient new redistancing technique with the aid of a
new data structure called the distance tree. This struc-
ture is 2 quadtree whose cells know their distance to I'(t)
and nearby elements of I'(¢), allowing for efficient 2pprox-
mate redistancing of ¢. Figure 1 shows a pentagonal curve
with the corresponding 6-level distance tree and signed
distance function. The distance tree is built efficiently
by a three-step recursive search procedure with guaran-
teed correctness. Delaunay triangulation is used to fix the
sign of the signed distance function ¢. The technique is
asymptotically optimal, requiring only (ON logN) work
to redistance an interface with NV elements, and extremely
fast in practice: computations of moderate complexity are
speeded up 400 times, while redistancing the CIR calcula-
tion on 2 uniform mesh costs considerably less than moving
¢ one step.

Tree methods for moving interfaces

Our work with distance trees leads in to the adaptive
tree-based level set method of Publication [P4]. Here we
combine backward characteristics with an adaptive tree
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mesh to build 2 method which is not only accurate and ro-
bust but also optimally efficient: An interface I'(t) with N
degrees of freedom costs only O(NV log N) to move one step.
Efficency is further enhanced by the semi-Lagrangian time
stepping scheme: Large time steps can be taken even though
the tree mesh contains tiny cells, because the backward
characteristic method is unconditionally stable.

The tree mesh is refined with a new functional ap-
proach: Given a level set function ¢(z,t,), we build a
tree at time .1 = t, + k by recursive evaluation of
92, tns1) = 9(s, t) 2t projected points 5 = T+KF(Z, tn)-
The criterion for splitting a tree cell is simple: the values of
@(Z, tas1) on the cell are smaller than the size of the cell.
This contrasts favorably with standard mesh refinement
algorithms, which tend to be based on error estimates for
the computed solution.

In our numerical experiments, the velocity is evaluated
either directly on the tree or by transferring ¢ to a uniform
grid and employing the velocity evaluation technique of
Publication [P2]. The sample calculations shown in Figure
2 clearly demonstrate the robustness of the tree method,
even when computing complex merges between interfaces
with corners. Grid effects, which often hamper level set
methods, are clearly absent.

A fast modular semi-Lagrangian method for moving inter-
faces

A completely modular method for moving interfaces
is developed and validated in Publication [P5]. It com-
bines the ideas above with second-order semi-lagrangian
time stepping, efficient exact quadtree-based redistancing,
2 modular problem-independent velocity extension, and
exact ¢ interpolation in the semi-Lagrangian method. Our
velocity extension technique evaluates the nearest-point
extension on a distance tree, builds a continuous inter-
polant, and satisfies a maximum principle.

The modular method resolves and moves complex in-
terfaces at optimal cost with time steps unconstrained by
rumerical stability. It is 3 “black-bax” method for moving
interfaces, which accepts the interface and its velocity at
time £ and returns the evolved interface one time step later.
Such methods simplify moving interfaces, because the nu-
merics are independent of the physical problem driving the
interfacial motion.

Nurnerical results show that our method converges to
correct viscosity solutions even for difficult moving inter-
face problems involving merging, faceting, transport, non-

locality and anisotropic curvature-dependent geometry. Large

time steps can be taken even for parabolic problems such as
curvature flows. Selected computational results are shown
in Figure 3.
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PUBLICATIONS
Full texts of the following preprints are available at
http://wew.math.berkeley.edn/ strain/.

[P1] J. Strain. Fast adaptive 2D vortex methods. J. Com-
put. Phys., 132: 108-122, 1997.

[P2] J. Strain. Semi-Lagrangian methods for level set
equations. J. Comput. Phys., 151:498-533, 1999.

[P3] J. Strain. Fast tree-based redistancing for level set
computstions. J. Comput. Phys., 152:664-686, 1999.

[P4] 3. Strain. Tree methods for moving interfaces. J.
Comput. Phys., 151:616-648, 1999.

P5] J. Strain. A fast modular semi-Lagrangian method
for moving interfaces. J. Comput. Phys., submitted
June 1999, revised January 2000.

INTERACTIONS AND TRANSITIONS

Conferences, meetings, seminars

Waork supported by this grant was presented in the
Computational Fluid Dynamics Workshop of the ASME
Fluids Engineering Division Sumrmer Meeting, San Diego,
California, July 1996, and at seminars and colloquia at Ar- -
gonne National Laboratory, Brown University, California
Institute of Technology the University of Akron, the Uni-
versity of Chicago, the University of California at Berkeley,
and Texas A&M University. The PI also gave a series of
lectures in the Graduate Summer Course on Algebra, Algo-
rithms and Approximation, at the Mathematical Sciences
Research Institute, Berkeley, CA, July 1996.

Consultative and advisory functions
The PI served on the NSF/DARPA review panel for the

Virtual Integrated Prototyping Initiative for Thin Films
during September 1996, the first DARPA/NSF workshop
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on Optimized Portable Application Libraries during June
1997, and the second DARPA/NSF workshop on Opti-
mized Portable Application and Algorithm Libraries dur-
ing December 1997. He also reviewed proposals for AFOSR
and NSF, reviewed papers for Applied and Computational
Harmonic Analysis, the Journal of Computational Physics,
the Journal of Mathematical Analysis and Applications,
the Monthly Weather Review, Proceedings of the Royal
Society of London (Series A), and the SIAM Journal on
Scientific Computing, and served as an Associate Editor
of the STAM Journal on Scdientific Computing-

Transttions

The triangulated vortex method (Russo and Strain,
1994) developed under prior AFOSR support (Grant No.
FDF-49620-93~1-0053) has been adopted by Dr. John
Grant’s group at the Naval Undersea Weapons Center,
Newport, RI. They have applied the method to calculate
moderate-Reynolds-number flows around various bodies of
DoD interest and are currently extending the method to
three-dimensional flows with boundaries.

The Ewald summation technique (Strain, 1992) devel-
oped under prior AFOSR support has been adopted by Dr.
Raz Kupferman at Lawrence Berkeley National Labora-
tory as part of a new random vortex code he is developing.

NEW DISCOVERIES OR PATENTS
Norne.

HONORS AND AWARDS
The PI received a five-year NSF Young Investigator
Award in September 1992.
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Figure 1: Six-level distance tree (2) and level set signed-
distance function on tzee (b).

Figure 2: Sample solutions of moving interface problems:
(a) initially circular bubbles after transport in a shear-
ing flow, (b) merging of complex interfaces with unit nor-
mal velocity, and {c) crystalline facets developing under a
threefold anisotropic curvature-dependent normal velocity.
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Figure 3: Selected computational results: (a-b) passive transport, (¢) unit normal velocity, (d-e) shrinking and merging
into Wulff shapes, (f) curvature flow, (g-i) spiral and (j-1) trefoils under volume-preserving curvature fiow.
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